_hellmaus_ (_hellmaus_) wrote,
_hellmaus_
_hellmaus_

Category:

2. ИСТОРИЯ ПРЕДСТАВЛЕНИЙ О ПРОИСХОЖДЕНИИ ЖИЗНИ

Древние и средневековые ученые всего мира были уверены, что живые организмы постоянно самозарождаются из неживой материи: мухи из гниющего мяса, мыши из грязных тряпок, и так далее. Первым попробовал проверить это итальянец Франческо Реди в 17 веке. Он клал мясо в кувшины и закрывал часть кувшинов тонкой кисеей. Оказалось, что черви заводятся только в тех кувшинах, которые не закрыты кисеей и куда могут залетать мухи. Так было показано, что самозарождение червей в мясе невозможно, черви вылупляются из яиц, отложенных мухами.

Затем были открыты микроорганизмы. Все считали, что хотя бы эти простейшие существа-то точно могут самозарождаться! Но и это было опровергнуто Спалланцани и Пастером в 19 веке. Лаццарро Спалланцани кипятил бульон и запаивал его в стеклянных колбах. Бульон не прокисал месяцами и годами в запаянной колбе, но быстро портился после вскрытия колбы, и в нем обнаруживались бактерии. Критики возражали, что для самозарождения в запаянной колбе не достаточно «упругости» (давления) воздуха, и Пастер повторил эксперимент Спалланцани с изменением: вместо наглухо запаяной колбы он вытягивал ее горло в длинную тонкую S-образно изогнутую трубочку. Этого было достаточно, чтобы бульон не портился, хотя воздух мог проходить внутрь. Так было показано, что даже микроорганизмы образуются путем размножения существующих микроорганизмов. Соответственно, перед учеными встала задача объяснить происхождение жизни.



Первые успехи в этом были достигнуты Опариным и Холдейном в 1920-ых годах. Опарин работал с коллоидными растворами белков и полисахаридов и обнаружил, что в некоторых условиях растворенные белки собираются в компактные капли — коацерваты — которые могут расти, поглощая растворенные вещества из внешней среды и делится, подобно клеткам. Так же он предположил, что атмосфера древней Земли была бескислородной и поэтому в ней был возможен абиогенный синтез органических веществ. Холдейн развил и конкретизировал идею «первичного бульона» - древнего океана, взаимодействующего с бескислородной атмосферой, в котором под действием разрядов молний, солнечного ультрафиолета и вулканических извержений идут разнообразные химические реакции, приводящие к образованию сложных органических молекул, образующих затем коацерватные клетки.

Идеи Опарина и Холдейна получили экспериментальное подтверждение в 1953 году в опытах Стенли Миллера. Он запаивал смесь газов, имитирующую древнюю атмосферу Земли (СН4, NH3, H2S, CO2) в замкнутую стеклянную установку, в которой была подогреваемая колба с водой, холодильник и электроды. Через электроды пропускались электрические разряды, имитирующие молнии. По прошествии нескольких суток Миллер вскрыл установку и обнаружил в воде разнообразные органические молекулы, включая простейшие аминокислоты (глицин, аланин), сахара (глицеральдегид, гликолевый альдегид) и органические кислоты (уксусная, молочная), характерные для живых организмов. Последующие экспериментаторы, варьируя условия и совершенствуя методы анализа, расширили набор продуктов в таком синтезе. Ими были получены многие аминокислоты, пуриновые основания — аденин и гуанин (они получаются, если в смесь газов добавить синильную кислоту), четырех- и пятиуглеродные сахара.

В целом можно было считать, что большинство необходимых для жизни молекул синтезируются абиогенно в условиях древней Земли.

Тем временем глубокое изучение современной жизни биохимиками и молекулярными биологами показало, что живые клетки не так уж просты, как казалось ранее, и пропасть между живым и неживым очень широка.

Первой проблемой стала огромная сложность живых клеток. Даже самые простые бактерии имеют геном из более миллиона нуклеотидов, кодирующий свыше тысячи белков. Для работы этого генома требуются специальные молекулярные машины синтеза белка (рибосомы), синтеза ДНК (репликативная вилка), энергоснабжения (как минимум 12 ферментов гликолиза, а обычно еще и электрон-транспортная цепь на мембране) и средства регуляции и управления (транскрипционные факторы и сигнальные белки). Сложность такой системы очень высока, а более простых самостоятельно реплицирующихся систем биология не знает. Вирусы не в счет — для их размножения требуется сложная живая клетка. Дарвиновский естественный отбор может порождать все более сложные системы, но для этого они с самого начала должны быть способны к репликации. Если естественный отбор начинается только с появлением первой клетки, то для ее образования случайным путем требуется гигантское время — на много порядков больше возраста Вселенной. В англоязычной литературе эта проблема называется «irreducible complexity» и ей много внимания уделяют сторонники идеи «разумного замысла» - креационисты, притворяющиеся учеными. Им принадлежит, например, аналогия «случайное самозарождение жизни так же вероятно, как случайная сборка Боинга-747 при прохождении урагана через мусорную свалку».

Вторая проблема чисто химическая, и связана она с оптической активностью молекул в живых организмах. Напоминаю, что «оптически активными» называются органические молекулы, в которых к одному атому углерода присоединены четыре разных группы. Поскольку связи атома углерода направлены к вершинам пирамиды, возможны два способа размещения четырех групп вокруг такого атома, которые являются зеркальными отражениями друг друга, подобно левой и правой руке. По аналогии с рукой такое свойство веществ называется еще «хиральностью». Название «оптическая активность» напоминает о свойстве таких веществ поворачивать плоскость поляризации проходящего через них света, если одного оптического изомера больше, чем другого. Это позволило Луи Пастеру разделить левовращающий и правовращающий изомеры винной кислоты, просто сортируя их кристаллы пинцетом в поляризованном свете — одни были темными, а другие светлыми. Он же показал, что плесень может питаться только одним изомером винной кислоты. Оптические изомеры многих веществ, например молочной кислоты, легко отличимы по вкусу и запаху, потому что наши обонятельные рецепторы — белки, построенные из левых изомеров аминокислот. Правовращающие аминокислоты в белках не встречаются, хотя иногда бывают в клеточных стенках бактерий, олигопептидных антибиотиках и других экзотических местах. Кроме того, все природные ДНК и РНК содержат исключительно правый изомер сахара (рибозы или дезоксирибозы). Живое вещество, таким образом, хирально чистое, тогда как во всех абиогенных синтезах получаются левые и правые изомеры в равных долях, а синтезированные из такой смеси полипептиды и полинуклеотиды имеют беспорядочную структуру и не способны выполнять никакие функции. Оптическая активность вещества проявляется либо при взаимодействии с поляризованным светом, либо при встрече с другим оптически активным веществом. Если мы хотим объяснить переход от смеси изомеров в абиогенно синтезированной органике к хирально чистому живому веществу, то оказываемся практически в положении Мюнхаузена, тащившего себя из болота за волосы — ведь чтобы пошли первые стереоспецифичные реакции, нужен стереоспецифичный фермент из хотя бы 50-100 аминокислот или нуклеотидов одной оптической формы, который случайным соединением мономеров создать невозможно. Можно попытаться найти источник поляризованного ультрафиолетового излучения, которое бы избирательно разрушало один оптический изомер. По некоторым астрономическим гипотезам, таким источником могло быть молодое Солнце, обладавшее мощным магнитным полем. Следы поляризованного ультрафиолета обнаруживаются в органическом веществе метеоритов. Там содержится ряд аминокислот, похожих на те, что получались в опытах Миллера, и левовращающие изомеры преобладают — их около 60%. Критики возражали, что  метеориты могли быть загрязнены земными бактериями с их левыми аминокислотами, но преобладание левого изомера показано и для тех метеоритных аминокислот, которые не синтезируются и не поедаются бактериями — например, 2-метил-2-аминобутановой кислоты. Тем не менее, соотношение изомеров 60 к 40 явно недостаточно для простого случайного перехода к хиральной чистоте, и надо искать дополнительные механизмы.

Третью проблему подкинули геохимики и космохимики. Межпланетные аппараты изучили Луну, Венеру, Марс и Меркурий, стал известен состав атмосферы Венеры и Марса. Применение новых аналитических методов к древнейшим земным горным породам позволило уточнить состав древней атмосферы Земли. Он оказался очень похож на современные атмосферы Венеры и Марса — 98% СО2, 1,5% N2 и малые доли других газов, в основном аргона и SO2. Из такой атмосферы в аппарате Миллера не получается никакой органики. Для получения органики из CO2 необходим восстановитель, и ученые занялись его поисками.

Первое решение проблемы «неупрощаемой сложности» появилось в конце 70-ых годов. Тогда были открыты РНК, обладающие каталитической активностью, или рибозимы. Роль РНК расширилась от скромного посредника между ДНК и белками до центральной молекулы в биологии: ведь она способна как хранить наследственную информацию, так и катализировать химические реакции. Появилась теория «мира РНК» - самокопирующиеся рибозимы с активностью РНК-зависимой РНК-полимеразы, которые начали естественный отбор задолго до появления клеток, и со временем передали каталитические функции белкам, а длительное хранение наследственной информации — ДНК. В дальнейшем были открыты в природе и получены искусственно сотни рибозимов. Выяснилось, что рибозимом является и пептидил-транферазный центр рибосомы, катализирующий ключевую реакцию синтеза белков. Однако, пока ни один рибозим не может создать копию себя из мономеров, так что теория РНК-мира доказана не полностью. Кроме того, для синтеза РНК нужна энергия, например, в виде нуклеотидтрифосфатов, и теория РНК-мира не объясняет происхождение этой энергии. 



Tags: происхождение жизни
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 26 comments